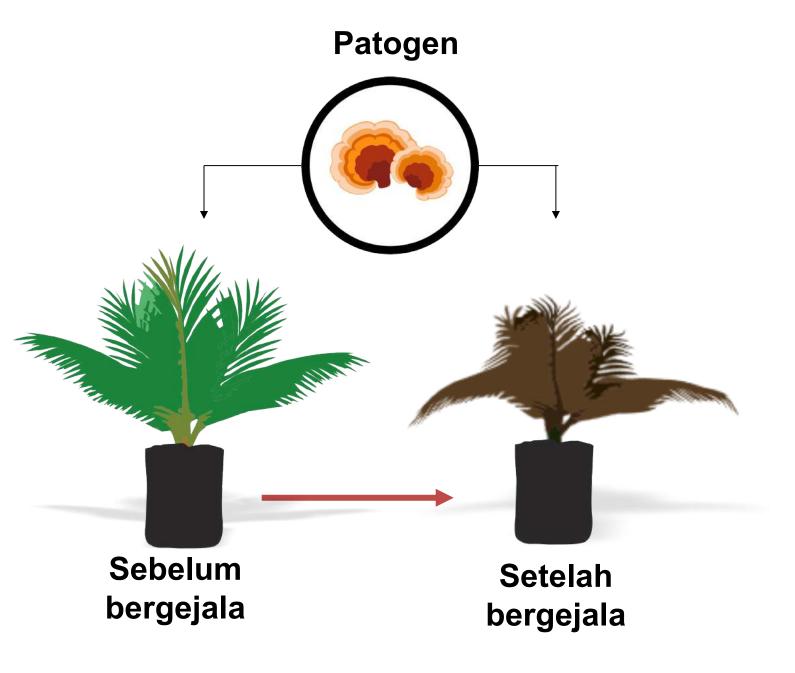


Deteksi Dini Serangan Ganoderma dengan Artificial Intelligence (AI) berbasis Pola Ultrasound sebagai Acuan Diagnosis dan Pemulihan Tanaman Kelapa Sawit Sakit

- Muhammad Akhid Syib'li, SP., MP., Ph.D. (Ketua)
- Adi Setiawan SP., MP., Ph.D.
- Barlian Henryranu Prasetyo, Ph.D



TUJUAN PROJECT

- 1. Membuat prototype alat pendeteksi tanaman sakit berbasis ultrasound
- 2. Mendiagnosis penyakit secara dini dengan data ultrasound dan metagenomik sebagai acuan dalam pemulihan tanaman
- 3. Mengumpulkan data set terkait pola ultrasound tanaman sakit dan tanaman sehat
- 4. Melatih machine learning pada data set ultrasound tanaman sakit dan tanaman sehat

JUSTIFIKASI RISET/PROJECT

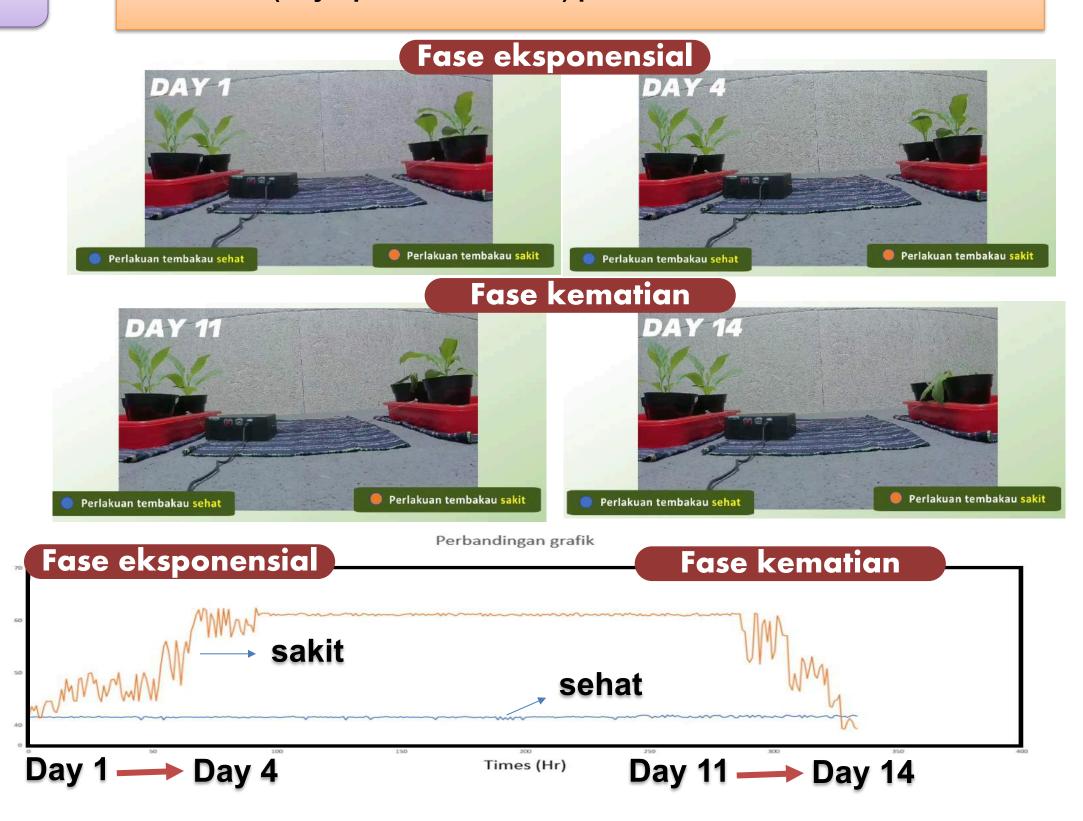
Ganoderma : Penyakit utama kelapa sawit

Serangan sangat sulit di deteksi, begitu terserang hanya menunggu tanaman sawit mati

Pertanyaan penting

- 1. Kapan tepatnya tanaman sawit mulai sakit (sebelum bergejala) karena serangan Ganoderma?
- 2. Bagaimana cara mendeteksi tanaman sawit sakit (sebelum bergejala) karena serangan Ganoderma?

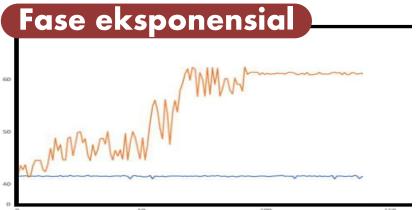
JUSTIFIKASI RISET/PROJECT


Pola Ultrasound Tanaman Sawit Sebelum Bergejala

Setelah Sebelum bergejala bergejala Frequency (kHz)

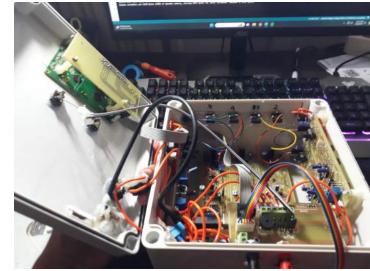
Tanaman mengeluarkan pola frekuensi suara yang mencerminkan kondisi tanaman

Penelitian sebelumnya pada tanaman model


Pada Penelitian sebelumnya telah dilakukan uji deteksi penyakit lanas (*Phytophtora nicotiane*) pada tanaman tembakau

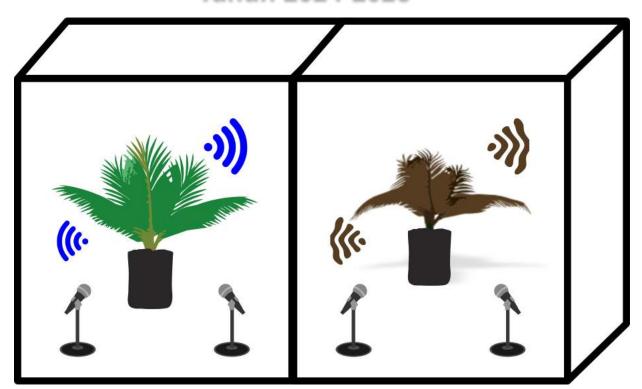
JUSTIFIKASI RISET/PROJECT

Eksplorasi Data Ultrasound



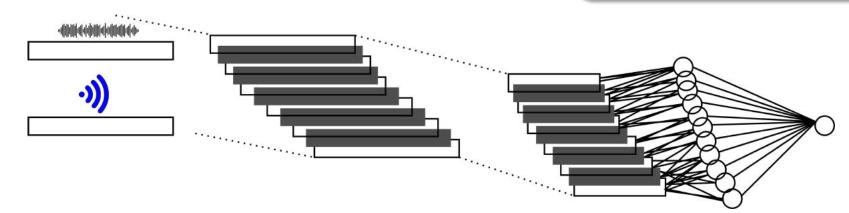
Hipotesis: Tanaman mengeluarkan pola frekuensi meningkat sampai 40-60 kHz mencerminkan kondisi tanaman yang sakit

Hipotesis: Terjadi lonjakan pola frekuensi tanaman yang sakit bahkan sebelum tanaman bergejala secara visual

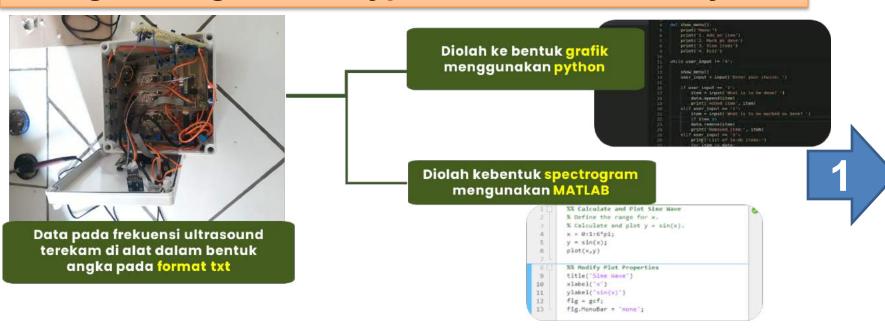

Perekaman Pola Frekuensi Tanaman Sawit dengan Prototype

BIG PICTURE RISET/PROJECT

Tahun 2024-2025

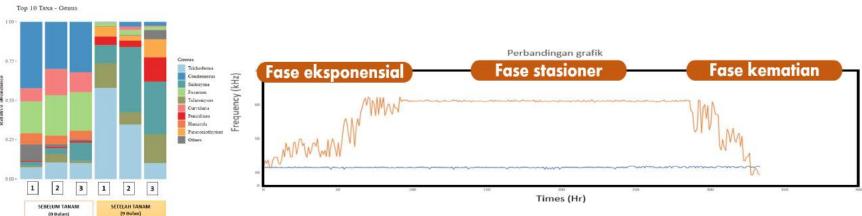

1. Pengembangan Prototype dan Perekaman Ultrasound di ruang kedap suara (tanpa noise)

3. Percobaan aplikasi Mechine Learning (AI) untuk mengenali Tanaman Sakit di rumah kaca (dengan noise)

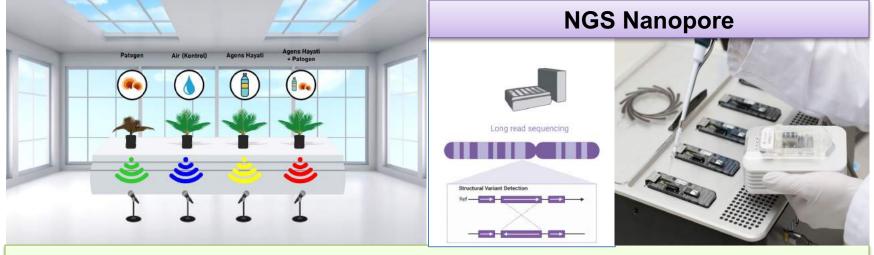

Tahun 2025-2026

2. Pelatihan Mechine Learning (AI) dengan data ultrasound and metagenome untuk mengenali Tanaman Sakit

GANTT CHART PELAKSANAAN


Pengembangan Prototype Al Pendeteksi Penyakit

Perlakuan:


- 1. Bibit Sawit Ganoderma
- 2. Bibit sawit + Aquades
- 3. Bibit Sawit + Agen hayati
- 4. Bibit Sawit +
 Ganoderma+ Agen
 hayati

Output Data :

- 1. Grafik deteksi penyakit sebagai acuan pemulihan penyakit
- 2. Diversitas mikroba sebagai dampak perlakuan

Analisa Pertumbuhan dan Ketahanan Penyakit serta Evaluasi Mikrobioma Rhizosfer

RAB RISET/PROJECT (BIAYA, MPP, ALAT DAN BAHAN)

No	Nama	Satuan		Harma Caturan	Total Accessor	
		Unit	Jumlah	Harga Satuan	Total Anggaran	Persentase
	Bahan Habis Pakai		5.0 Se		80.577.000	Į.
1	Nuclease free water 1L (Smobio)	Liter	2	2.000.000	4.000.000	28%
2	10X TBE bufer 1L	Liter	4	2.000.000	8.000.000	
3	Agarose Gel 100 gr (Smobio)	Unit	1	2.500.000	2.500.000	
4	Primer ITS1 (forward and reverse)	Primer	20	250.000	5.000.000	
5	Primer ITS4 (Forward and reverse)	Primer	20	250.000	5.000.000	
6	Plant/Fungi Kit Norgen	Unit	2	10.198.000	20.396.000	
7	Plastic Wrap	Buah	20	28.500	570.000	
8	Alluminium Foil	Buah	10	27.500	275.000	
9	PCR and Sequencing Reaction Clean Up Kit	Unit	2	4.593.000	9.186.000	
10	Filtered tip 1000 ul	Pack	20	150.000	3.000.000	
11	Filtered tip 200 ul	Pack	20	150.000	3.000.000	
12	Filtered tip 10 ul	Pack	20	150.000	3.000.000	
13	Cawan Petri Plastik	Pack	100	30.000	3.000.000	
14	Jarum Ose	Buah	20	8.500	170.000	
15	Media Nutrient Agar	Gram	150	7.000	1.050.000	
16	Media Nutrient Broth	Gram	200	7.000	1.400.000	
17	Media Potato Dextrose Agar	Gram	150	6.000	900.000	
18	Akuades steril	Liter	60	5.000	300.000	
19	Alkohol 70%	Liter	40	31.000	1.240.000	
20	Kloramfenikol	Sachet	20	15.000	300.000	
21	Spirtus	Liter	10	25.000	250.000	
22	Plastik Petromax	Pack	20	27.000	540.000	
23	Mikoriza	Kg	75	100.000	7.500.000	
	Pengujian dan Analisis		50 00		150.000.000	į.
1	Analisis Metagenomik (Nanopore Next Generation Sequencing)	Sampel	25	4.000.000	100.000.000	52%
2	Pengembangan Alat dan Software (AI) dengan Pola Ultrasound	Pack	1	50.000.000	50.000.000	
	Honorarium				20.520.000	1
1	Honorarium Ketua Peneliti (Muhammad Akhid Syibli)	ОН	150	45.600	6.840.000	70/
2	Honorarium Anggota Peneliti (Adi Setiawan)	ОН	150	45.600	6.840.000	7%
3	Honorarium Anggota Peneliti (Barlian Henryranu Prasetyo)	ОН	150	45.600	6.840.000	
	Biaya Perjalanan Dinas				34.687.104	Ų
1	Travel Malang-Surabaya (3 orang, 2 Perjalanan)	PP	6	228.000	1.368.000	12%
2	Pesawat Surabaya-Palangkaraya (3 orang, 2 Perjalanan)	PP	6	5.553.184	33.319.104	
	TOTAL ANGGARAN		ke 196		285.784.104	100%

DAMPAK RISET/PROJECT

Financial	Non Financial
Peningkatan Produktivitas: Dengan mampu mendeteksi serangan Ganoderma secara dini, petani kelapa sawit dapat mengambil tindakan pencegahan yang sesuai secara tepat waktu, mengurangi kerugian yang disebabkan oleh infeksi dan meningkatkan produktivitas.	Diperoleh acuan data dalam deteksi penyakit secara dini
Biaya Pengobatan yang Lebih Efisien: Dengan AI berbasis pola ultrasound, diagnosa awal serangan Ganoderma dapat dilakukan dengan biaya yang lebih rendah dibandingkan dengan metode tradisional atau tes laboratorium yang mahal.	Tepat waktu dan tepat sasaran dalam pemulihan tanaman dan pengendalian penyakit
Penghematan Biaya Pemulihan: Melalui deteksi dini, biaya pemulihan tanaman yang terinfeksi dapat diminimalkan karena tindakan pengobatan atau penggantian tanaman yang diperlukan dapat dilakukan lebih efisien.	Konservasi Sumber Daya: Dengan deteksi dini serangan Ganoderma, petani dapat mengurangi penggunaan pestisida dan bahan kimia lainnya yang dapat merusak lingkungan.
Peningkatan Kualitas Hasil: Dengan mengurangi kerugian yang disebabkan oleh Ganoderma, kualitas buah kelapa sawit yang dihasilkan dapat meningkat, yang pada gilirannya dapat menghasilkan pendapatan yang lebih tinggi.	

