

"Pembudidayaan Jenis Legume Cover Crop

(LCC) dalam Mendukung Kesehatan dan

Kesuburan Biologis Tanah"

Project Leader: Mochamad Henry Narpati

Mahasiswa Prodi Ilmu Tanah

Universitas Sebelas Maret

TUJUAN RISET

- 1. Mempelajari keragaan dari masing-masing jenis tanaman LCC yang telah ada di Kebun PT. BGA seperti: warna daun, pertumbuhan pada kondisi lahan terbuka (TBM) dan dibawah naungan (TM) ?
- 2. Mempelajari pengaruh penggunaan berbagai jenis *Legume Cover Crop* terhadap kualitas dan kesehatan tanah dalam aspek biologis
- 3. Mengetahui jenis Legume Cover Crop yang menghasilkan kualitas dan kesehatan tanah terbaik terhadap aspek biologi.

JUSTIFIKASI RISET

- Perkebunan kelapa sawit PT. Bumitama Gunajaya Agro (PT BGA) dikembangkan pada tanah marginal (Spodosol) dengan karakteristik miskin hara. Pola tanam kelapa sawit yang monokultur pada tanah-tanah marginal menghadapi beberapa kendala karena tanahnya mempunyai daya menahan air yang buruk, kandungan bahan organik rendah, dan tingginya kehilangan hara akibat pelindian (*leaching*) (Efendi et al., 2023).
- Tanah-tanah marginal ini membutuhkan banyak perbaikan dan pengelolaan yang baik agar tetap menjaga Kesehatan tanah serta menunjang pertumbuhan tanaman kelapa sawit (Kartika, 2016).
- Usaha dalam meningkatkan kesehatan tanah dilakukan dengan penerapan praktik pertanian berkelanjutan yang berfokus pada pemanfaatan mikroorganisme tanah sebagai agen hayati pembenah tanah (Nainggolan, 2024).
- Penanaman *Legume cover crops* (LCC) dapat meningkatkan kesuburan tanah karena simbiosis antara tanaman kacang-kacangan dengan bakteri Rhizobium sebagai penambat nitrogen dan pelarut fosfat sehingga dapat mengurangi biaya pupuk seperti Urea dan TSP hingga 40-50% (Hutasoit, 2018).
- Tanaman LCC dapat menjadi *safety net* dalam penyerapan hara yang tidak terserap oleh akar tanaman kelapa sawit (Wirayuda et al., 2024).

BIG PICTURE RISET

2025				
Luaran	Hasil Evaluasi Pembudidayaan LCC			
	Publikasi			
	Rekomendasi jenis LCC yang sesuai berdasarkan permasalahan pada lahan			
Biaya	Rp 10.000.000			

METODOLOGI RISET

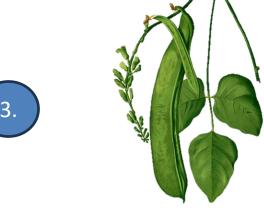
No	PARAMETER	ALAT	BAHAN	KETERKAITAN DENGAN KESEHATAN TANAH	METODE
1	Keanekaragaman Hayati (Makrofauna)	1. Cangkul 2. Meteran 3. Nampan 4. tali rafia 5. patok 6. flakon	1. Alkohol 70% 2. Formalin 4% 3. Larutan detergen 20%	Biomassa relatif, aktivitas organisme tanah, dan tingkat respirasi	Pitfall trap, monolit
2	Keanekaragaman mikroba fungsional (BPN, BPF, BPK)	1. Shaker 2. Petridish 3. Vortex 4. Dryglasky 5. mikropipet	1. YEMA 2. Medium agar 3. Pikovskaya 4. NA	Menunjukan simbiosis mikroba fungsional terhadap akar tanaman dalam proses penambatan N, pelarutan fosfat dan Kalium	Isolasi pada medium spesifik
3	Respirasi tanah	1. botol film 2. toples penyukup 3. plastik penutup	1. KOH 0,1 N 2. HCl sampel 3. HCl blanko	Menunjukan aktivitas mikroba, aktivitas organisme, kehilangan dan perolehan C	Metode Verstreate
4	C-biomassa	1. Kuvet, Pipet 2. Gelas ukur 3. Erlenmeyer 4. Flakon 5. Shaker 6. Kertas Saring 7. Spektrofotomet	1. Sampel tanah 2. K2SO4 3. H2SO4 4. K2Cr2O7 5. CaCO3 6. Kloroform	Menunjukan aktivitas potensial mikroba dan bahan organik	Non- fumigasi
5	Jumlah dan bobot bintil akar	1. Cangkul 2. Cetok 3. plastik	1. Sampel akar tanaman LCC	Menggambarkan indeks penambatan nitrogen, serta pelarutan fosfat dan kalium oleh bakteri rhizosfer	Metode kualitatif

GANTT CHART RISET

	Nama Kegiatan	2025								
No		Februari	Maret	April	Mei	Juni	Juli	Agustus	September	Oktober
1.	Survei									
2.	Penanaman LCC Varietas Canavalia									
3.	Analisis lapangan									
4.	Pengambilan sampel tanah									
5.	Analisis Laboratorium									
6.	Analisis data dan pelaporan									

LUARAN RISET

1.


Hasil Evaluasi

Pembudidayaan LCCc

Publikasi

Rekomendasi jenis LCC

RENCANA ANGGARAN RISET

No	Rincian	Qty	Harga	Total
1	Honorarium	1	1.000.000	1.985.000
	Biaya Bahan			2.015.000
	Alkohol 70%	5 L	20.000	100.000
	Formalin 4%	1	240.000	240.00
2	Detergen	1	30.000	30.000
2	Medium Isolat	30	50.000	1.500.000
	KOH 0,1 N	1	50.000	50.000
	HCl	1	30.000	30.000
	Kloroform	100 ml	650	65.000
3.	Pengiriman Sampel	1	1.000.000	1.000.000
4.	Anlisis Laboratorium dan Uji Riset	1	5.000.000	5.000.000
	10.000.000			

DAMPAK RISET (FINANCIAL & NON FINANCIAL)

1. Financial

- Biaya pemupukan PT. BGA pada tahun 2023 memakan biaya Rp 515.000.000.000
- Menurut (Hutasoit, 2018), penggunaan LCC dalam pemanfaatan mikroba fungsional dapat mengurangi biaya pupuk seperti Urea dan TSP hingga 40-50%
- Saving potensial dari project ini dapat mencapai Rp 200.000.000.000 dari penghematan penggunaan pupuk

2. Non-financial

- Meningkatkan kesehatan tanah
- Memperbaiki fungsi tanah marginal
- Menghasilkan biomassa
- Menjadi nilai tambah sebagai bahan pangan untuk warga emplacement kebun

Terimakasih

Open Innovation BGA Tahun 2025

