

Optimasi Oil Content Kelapa Sawit melalui Deteksi Presisi Sebaran Nutrisi dengan Teknologi Geoelectric Configuration Sensor (GCS) dan Lock-In Amplifiers

Project Leader: ADITIA NATANAIL MANULANG

Team Project : Muhammad Aryuda Pratama
Ofin Hasrat Lase
Lucky Putra Sidabalok

LATAR BELAKANG & TUJUAN RISET

Case 1:

Manajemen Pemupukan BGA Menggunakan Prinsip 5T: Tepat (Cara, Jenis, Dosis, Pelaporan dan Waktu). **Namun** Sistem Monitoring Hanya Dilakukan 1 Setahun Dalam Buku Laporan

Sumber: Hasil Wawancara/Diskusi Karyawan X di Unit Sei Rasau BGA

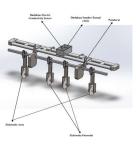
(1.5 – 2) kg PKK

Case 2:

Proses Pemupukan Dalam Setahun Sebanyak 10 kali Dimana Setiap Bulannya Sebanyak 4 Rotasi dengan Jenis Pupuk Berbeda (Rock Phosphate, Urea, Kieserit dan Borate). **Namun** Tidak Memperhatikan Residu yang Dihasilkan Pada Tanah

Case 3:

Pengujian Kesuburan dan Kandungan Nutrisi yang Dibutuhkan Dengan Mengambil Sampel Tanah dan Daun Per Blok Untuk Dibawa Ke Lab. **Namun** Membutuhkan Waktu 1 Bulan Dalam Menghasilkan Data Buku Rekomendasi Pupuk



FOKUS:

BGA Sedang Menggalakkan **Program Mekanisasi Berbasis Teknologi** Dalam Pengelolaan Lahan Perkebunan Kelapa Sawit

Perangkat GCS
Sensor Berbasis
Elektroda piringan
yang berputar yang
Terintegrasi Lock-In
Amplifier

memanfaatkan arus listrik *eddy current* dan cuplik sinyal dari noise

I TUJUAN PROJECT

Merancang dan menguji perangkat pendugaan nilai nutrisi kelapa sawit berbasis *Geoelectric Configuration Sensor* (GCS) terintegrasi *Lock In Amplifier* dengan menganalisis sebaran serapan unsur hara yang memiliki performa tinggi, cepat dan presisi.

Menentukan tingkat kadar nutrisi tanaman kelapa sawit optimal melalui analisis sebaran serapan unsur hara dari hasil identifikasi resistivitas listrik dan frekuensi gelombang spektrum berbasis *geoelectric configuration sensor* (GCS) terintegrasi *lock-in amplifier*.

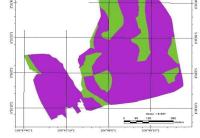
JUSTIFIKASI RISET

Beberapa riset yang dilakukan **Doni, 2021** telah memfokuskan pada penggunaan konfigurasi wenner schlumburger pada system geolistrik untuk mendeteksi resistivitas tanah pada proses pemupukan. Namun, riset ini jangkauan deteksi hanya 7 m dikarenakan masih menggunakan **elektroda tunggal** dan tidak melakukan replikasi data serta menyampingkan faktor kelembaban tanah, komposisi tanah, atau kandungan nutrisi tanah yang berdampak terjadinya gangguan elektromagnetik dari struktur geologi atau bendabenda lain di bawah permukaan tanah

Sumber: DOI: http://dx.doi.org/10.26418/pf.v9i3.51245

Riset selanjutnya **Rinto Manurung, 2017** melakukan pemetaan unsur hara NPK Perkebunan kelapa sawit di lahan gambut menggunakan alat survey berbasis *Soil Plant Analysis Development* (SPAD) yang memiliki kekurangan yaitu cakupan skala terbatas hanya 1:50.000 yang tidak cukup rinci untuk menangkap variasi lokal yang lebih halus dalam ketersediaan unsur hara. Kemudian tidak adanya perbandingan data nongambut, dan tidak mempertimbangkan karakteristik tanah yang berbeda seperti mikroorganisme tanah, tekstur tanah

Sumber: DOI: http://dx.doi.org/10.26418/pedontropika.v3i1.23438


Posisi Peneliti Dalam Melakukan Project

a. Inovasi pada Penggunaan Teknologi Geoelectric Configurasi Sensor (GCS) yang Terintegrasi Lock In Amplifiers

Salah satu keunggulan riset/proyek kita adalah integrasi antara GCS dan Lock-In Amplifier memungkinkan pengukuran dengan akurasi tinggi yang mampu mengklasifikasi serapan nutrisi unsur hara melalui resistivitas listrik dan frekuensi gelombang spektrum dengan mengangkat sinyal dari noise untuk dicuplik, ditahan, dan disimpan secara berkala. Sehingga dapat mendeteksi lebih dini terhadap perubahan dalam kondisi tanah dan tanaman, sehingga memungkinkan tindakan korektif yang lebih tepat waktu dalam manajemen pupuk dan perawatan tanaman.

b. Modifikasi Elektroda Berbasis Piringan Berputar

Riset kita mencoba memodifikasi elektroda menjadi piringan berputar yang dapat memberikan pengukuran yang lebih akurat karena permukaannya yang lebih luas dan merata sehingga menjangkau semua area dan menghasilkan distribusi arus homogen untuk mendeteksi penyebaran serapan unsur hara di sekitar akar tanaman kelapa sawit yang lebih seragam sehingga mengurangi kemungkinan terjadinya distorsi atau gangguan dalam pengukuran.

BIG PICTURE RISET

Penelitian dan Pengembangan Awal

- Studi literatur
- Desain dan Konstruksi teknologi GCS-Lock In Amplifier yang Termodifikasi Elektroda Piringan Berputar
- Pemrograman system dan Kalibrasi Teknologi GCS-Lock In Amplifier
- Performansi alat dengan lintasan dan jenis lahan tanaman kelapa sawit yang berbeda
- Validasi alat dengan Wiring Diagram Veris 3100 Top Soil dan
- Evaluasi hasil uji alat untuk mengkolerasi resistivitas tanah terhadap sebaran serapan nutrisi tanaman kelapa sawit

2025

Luaran: Prototipe TRL 4-5 Publikasi dan HAKI

Optimalisasi Formulasi dan Pengujian Lapangan Awal

- Meningkatkan efektivitas performansi teknologi GCS-Lock In Amplifier dengan beberapa perulangan data dengan jarak lintasan yang lebih luas
- Menyiapkan Lahan Uji Coba Pada Variasi Kondisi Tanah dan Lingkungan yang berbeda dengan Mengaplikasikan system database teknologi GCS-Lock In Amplifier
- Menghitung Biaya dan Manfaat Penggunaan teknologi GCS-Lock In Amplifier dalam Jangka Panjang

2026

Luaran: Purwarupa TRL 6-7 Publikasi dan HAKI

Pengembangan dan Validasi Skala Besar

- Optimasi datasheet atau database teknologi GCS-Lock In Amplifier berdasarkan hasil pengujian lapangan terbatas dan melakukan pengembangan analisis sebaran serapan unsur hara sebagai indicator manajemen pupuk
- Penyebaran Teknologi teknologi GCS-Lock In Amplifier ke lahan skala besar di berbagai wilayah dan diamati pertumbuhan hasil dan kesehatan tanaman secara luas
- Evaluasi dampak ekonomi dan Sosial dan Identifikasi Keuntungan bagi Industri

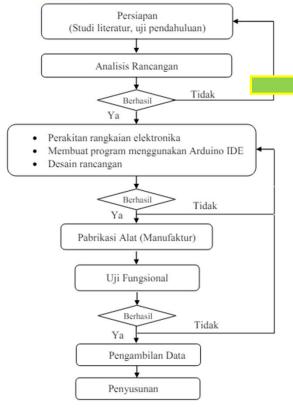
2027

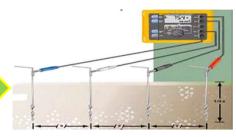
Luaran: Teknologi TRL 8-9

Skala Penerapan Komersial

- Kerjasama dengan pihak industri khususnya BGA Untuk produksi masal, perencanaan distribusi dan pemasaran pProduk
- Peluncuran resmi dan Implementasi teknologi GCS-Lock In Amplifier Monitoring kinerja dan Evaluasi dampak penerapan teknologi GCS-Lock In Amplifier terhadap produktivitas manajemen pupuk dan Lingkungan.

2028


Luaran: Komersial Produk



METODOLOGI RISET

Gambar 2. Tahapan Penelitian

<u>Uji Pendahuluan</u>

Proses penancapan empat buah elektroda ke dalam tanah dengan jarak yang telah ditentukan yang dialirin arus Listrik kemudian diukur V dan I menggunakan multimeter digital

Proses Validasi
Pengambilan Sampel Tanah
dan Diuji Dengan Alat Instrumen
EC Meter CONT 310

Proses Kalibrasi

Proses kalibrasi sensor INA219 menggunakan resistor dengan nilai resistansi 68 ohm, 100 ohm, 200 ohm, 330 ohm, 530 ohm, 1000 ohm, dan 2000 ohm sebanyak 10 kali

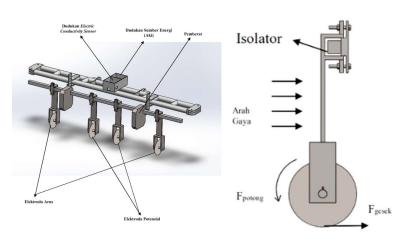
<u>Pengujian dan Performansi</u>

Pengujian Lahan Perkebunan Kelapa Sawit Menggunakan Piringan 8 Elektroda yang Didorong dan Dicatat Resistivitas yang Dihasilkan

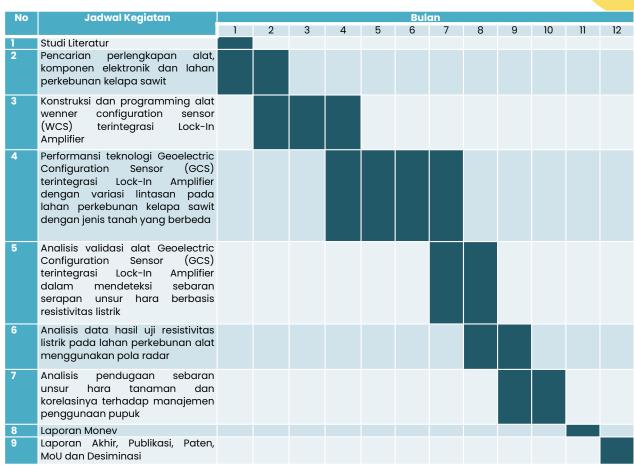
Proses Uji Lapangan

Persiapan lahan dengan kadar air 21,4%-36,3%, lebar 6 lintasan, dimana per lintasan memiliki ukuran lebar kerja 2.3 meter dan panjang lintasan 28

Perancangan dan Pemrograman

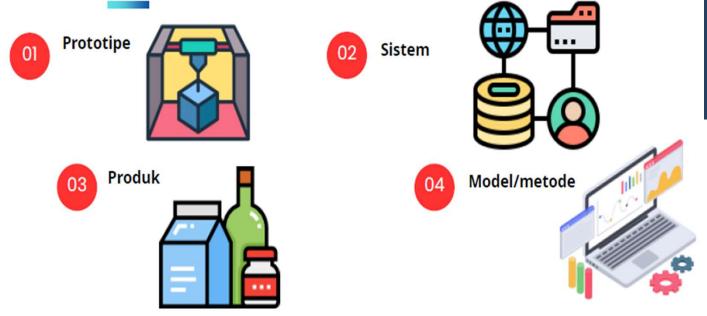

Persiapan Bahan dan Komponen Berbasis Sensor GCS yang Terintegrasi Lock in Amplifier dengan Elektroda Modifikasi Piringan

Open Innovation BGA Tahun 2025



GANTT CHART RISET

Gambar 1. Bentuk Rancangan 3D Sistem Deteksi Sebaran Unsur Hara yang Dimodifikasi Elektroda Piringan Berbasis GCS yang Terintegrasi Lock In Amplifier


Jadwal Kegiatan Riset/Project

LUARAN RISET

- l. Laporan Kemajuan dan laporan Akhir
- 2. Jurnal Ilmiah
- 3. HAKI/HAK CIPTA/PATEN

RENCANA ANGGARAN RISET

Jenis Pengeluaran	Volume	Harga Satuan (Rp)	Total (Rp)	
Belanja Peralatan dan Bahan (maks. 60%)				
Elektronik akuisisi data	3 unit	3.500.000	10.500.000	
Four point probes (GCS)	12 elektroda	850.000	10.200.000	
Piringan stainless steel diameter 23 cm	12 piringan	200.000	2.400.000	
Lock In Amplifier	1 unit	1.500.000	1.500.000	
EC Meter Cont 3310	3 unit	3.000.000	9.000.000	
Sensor tegangan dan arus INA219	3 unit	1.750.000	5.250.000	
Veris EC Soil Seri 3100	3 unit	3.000.000	9.000.000	
Data Logger Shield	1 pasang	500.000	500.000	
Badan Implemen	3 papan	2.000.000	6.000.000	
Poros, mur, baut	1 paket	1.000.000	1.000.000	
Kerangka alat yang akan dikonstruksi/dilas yang diintegrasi oleh sistem sensor	1 unit	5.000.000	5.000.00	
Kotak kemasan dari PLA	3 paket	2.250.000	6.750.000	
Sensor UV VEML 6070	3 unit	1.500.000	4.500.000	
Pupuk NPK	1 sak	327.000	327.000	
Sensor BH1750	3 unit	2.300.000	6.900.000	
Remote untuk Otomatisasi	1 unit	5.000.000	5.000.000	
Arduino uno	3 unit	1.000.000	3.000.000	
Nodemcu IoT	3 unit	1.000.000	3.000.000	
LCD 16 x 2	3 unit	300.000	900.000	
Adaptor	1 unit	500.000	500.000	
Solar Panel	1 unit	5.000.000	5.000.000	
Konverter	1 unit	1.500.000	1.500.000	
Baterai	1 unit	2.500.000	2.500.000	

Kabel	2 gulungan	500.000	1.000.000
Akrilik	3 papan	500.000	1.500.000
Aquadest	20 L	20.000	400.000
Pegangan alat	3 unit	1.000.000	3.000.000
Kapasitor elko	15 unit	250.000	3.750.000
Kapasitor keramik	3 unit	750.000	2.250.000
Resistor dan Dioda	1 paket	1.000.000	1.000.000
Isolator teflon	6 pcs	250.000	1.500.000
Hardisk	1 unit	800.000	800.000
Cetak Membran Film	5 pasang	500.000	2.500.000
Sofware Origin	1 unit	500.000	500.000
Uji validasi unsur K metode AAS	5 kali	500.000	2.500.000
Uji validasi unsur P Metode AAS	5 kali	500.000	2.500.000
Uji validasi unsur N Metode AAS	5 unit	500.000	2.500.000
Validasi pH meter	1 unit	2.000.000	2.000.000
Validasi NPK sensor	1 unit	6.500.000	6.500.000
Multimeter	1 unit	500.000	500.000
Solder glue gun	3 buah	200.000	600.000
Cat Piloks	10 buah	150.000	1.500.000
Solder Timah	3 unit	200.000	600.000
Timah gulung	3 gulung	100.000	300.000
Lem tebak	3 buah	100.000	100.000
Timah soulder	2 unit	250.000	500.000
Masker	2 kotak	150.000	300.000
Handsentizer	10 botol	50.000	500.000
SUB	TOTAL	138.327.000	

DAMPAK RISET (FINANCIAL & NON FINANCIAL)

Dampak Finansial

Peningkatan Efisiensi Penggunaan Pupuk

Riset ini dapat menghasilkan teknologi GCS terintegrasi dengan Lock-In Amplifier yang dapat mendeteksi serapan nutrisi unsur hara pada tanaman kelapa sawit apakah optimal atau belum sehingga dapat memonitoring jadwal proses dan dosis pemupukan yang dapat mengurangi biaya pembelian pupuk yang tidak perlu.

Peningkatan Produktivitas Tanaman

Adanya pendekatan teknologi GCS-Lock In Amplifiers ini dapat memanajemen nutrisi yang dibutuhkan tanaman kelapasa sawit sehingga proses fotosintesis, pertumbuhan, pembuahan dan imunitas tanaman sawit untuk kebal akan penyakit dan hama lebih optimal

Reduksi Biaya Operasional

Dengan kemampuan pemantauan real-time dan pengambilan keputusan yang lebih cepat, teknologi ini dapat mengurangi biaya operasional seperti biaya tenaga kerja, biaya pemeliharaan tanaman, dan biaya transportasi, yang secara keseluruhan akan menghasilkan penghematan finansial.

Dampak Non Finansial

Keberlanjutan Lingkungan

Teknologi ini dapat membantu dalam pengelolaan lingkungan yang lebih baik dengan memastikan penggunaan pupuk yang lebih tepat, mengurangi risiko pencemaran lingkungan akibat kelebihan nutrisi atau limbah residu pupuk.

Peningkatan Kualitas Tanaman

Dengan manajemen nutrisi yang lebih baik, diharapkan kualitas dan kesehatan tanaman kelapa sawit akan meningkat, yang pada gilirannya dapat meningkatkan daya tahan tanaman terhadap penyakit dan serangan hama serta menghasilkan kualitas buah dengan rendeman yang tinggi, dan ALB yang rendah.

Kesejahteraan Petani/Karyawan

Penerapan teknologi ini dapat membantu dalam menyederhanakan proses manajemen pertanian dan membuatnya lebih efisien, mengurangi beban kerja petani dan meningkatkan kesejahteraan mereka.

Terimakasih

Open Innovation BGA Tahun 2025

