

Justification and Objective

- 1) Palm oil is one of the most widely used vegetable oils, with significant economic importance.
- 2) Increasing palm oil production sustainably without expanding plantation areas is crucial.
- 3) One promising approach is using plant-associated microbes to upregulate genes involved in lipid biosynthesis, thereby enhancing oil yield.
- 4) This proposal explores the potential of microbial inoculation to stimulate oil biosynthesis-related gene expression in oil palm (*Elaeis guineensis*).

Objectives

- 1) To identify and characterize beneficial microbes that influence lipid biosynthesis in oil palm.
- 2) To evaluate different microbial delivery methods for effective plant colonization.
- 3) To assess changes in gene expression and oil content in treated palm plants.
- 4) To compare oil yield between treated and control plants.

Methodology

1. Microbial Selection and Preparation

- Screen naturally occurring plant growth-promoting microbes (PGPMs) from oil palm rhizosphere and endosphere.
- Select strains known for producing plant hormones (e.g., auxins, gibberellins) and other bioactive compounds.
- Alternatively, genetically engineer microbes to express signaling molecules that enhance lipid metabolism.

2. Microbial Delivery Methods

- Seed Coating: Seeds will be treated with microbial suspension before germination.
- Soil Inoculation: Microbes will be introduced into the rhizosphere.
- Foliar Spray: Microbial cultures will be applied to leaves to induce systemic responses.
- Trunk Injection: Microbial solutions will be injected into the palm trunk for direct uptake.

Methodology

3. Evaluation of Gene Expression and Oil Production

- Molecular Analysis: RNA extraction from leaf and fruit tissues followed by RT-qPCR/RNA-Seq to measure lipid biosynthesis gene expression.
- Metabolomics & Lipid Profiling: GC-MS/LC-MS will be used to analyze oil composition.
- Microscopy & Histology: Oil body formation will be examined using fluorescence and electron microscopy.
- Yield Assessment: Fresh fruit bunches (FFB) and oil content per bunch will be compared between treated and control groups.

4. Expected Outcomes

- Identification of effective microbes that enhance lipid biosynthesis gene expression.
- Optimized microbial delivery methods for oil palm application.
- Increased oil yield in treated plants without genetic modification of the plant itself.
- A sustainable, eco-friendly approach to improving palm oil production.

Budgeting

No		Item	Allocation cost (IDR)
1	Personnel	Main Researchers	135000000
		Research Assisstant	22500000
2	Research Activity	Microbial Screening and Selection	26500000
		Field Application and Optimization	4000000
		Final Analysis and Reporting	25000000
3	Accomodation and Transportation		48000000
4	Miscellaneous items		3000000
Total			30000000

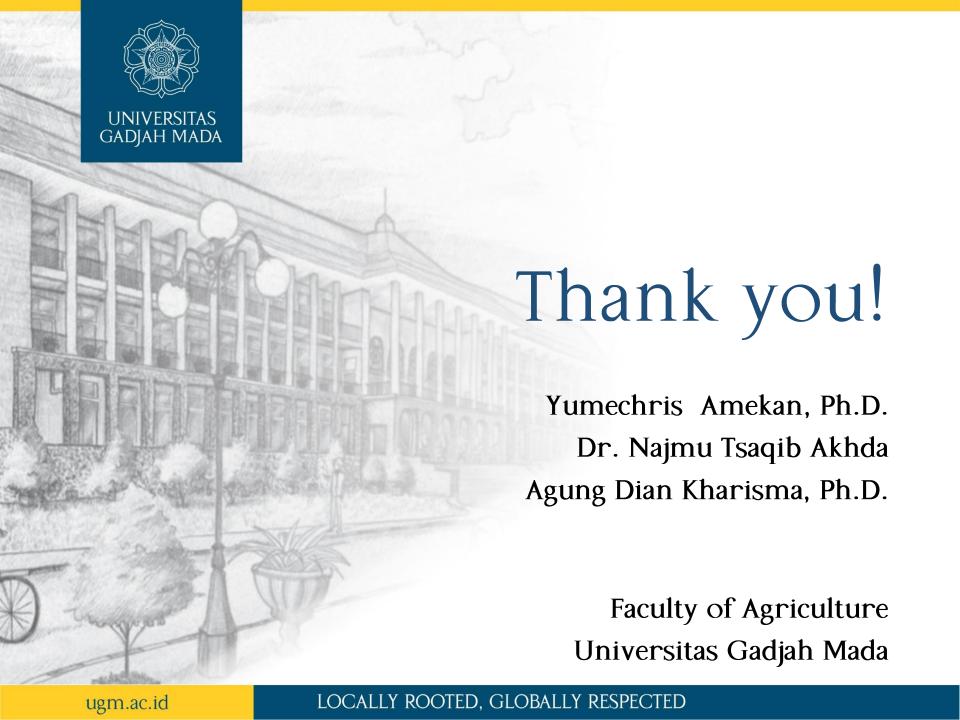
Timeline

Activity	Year 1	Year 2	Year 3
Microbial isolation & screening	$ \checkmark $		
Laboratory-scale microbial testing			
Optimization of microbial culture conditions			
Field inoculation trials		$ \checkmark $	
Evaluation of microbial delivery methods		৶	
Mid-term assessment (gene expression, oil yield)		❖	
Final assessment (yield, oil profiling)			♦
Advanced metabolomic and lipid profiling			∜
Data analysis and statistical evaluation	∜	⋞	♦
Report preparation and stakeholder dissemination			♦

Expected Outcome

- 1) Identification of effective microbes that enhance lipid biosynthesis gene expression.
- 2) Optimized microbial delivery methods for oil palm application.
- 3) Increased oil yield in treated plants without genetic modification of the plant itself.
- 4) A sustainable, eco-friendly approach to improving palm oil production.

Projected Benefits


Projected Benefits:

- Increased Oil Yield: A projected 10-20% increase in palm oil production.
- Higher Profitability: Enhanced oil production translates to a higher return on investment for plantation owners.
- Sustainability: Reducing the need for land expansion while maximizing current plantation productivity.
- Market Advantage: Improved oil quality may attract premium pricing in international markets.
- Economic Impact: Strengthening the palm oil industry by reducing dependency on synthetic growth stimulants and fertilizers.

References

- 1. Vacheron, J., et al. (2013). Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science, 4, 356.
- 2. Compant, S., et al. (2010). Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 76(17), 4945-4950.
- 3. Numan, M., et al. (2018). Plant growth-promoting bacteria as an alternative strategy for sustainable agriculture: A review. Sustainability, 10(5), 1668.
- 4. Azizan, K.A., et al. (2021). Metabolic engineering of oil palm for enhanced lipid production: Advances and perspectives. Biotechnology Advances, 50, 107775.
- 5. Thakur, S., et al. (2023). Metabolic Engineering of Lipid Biosynthesis Pathway to Enhance the Oil Content in Microalgae. In Microbial Engineering for Therapeutics, pp. 35-50. Springer, Singapore.

