

Deteksi *Real-Time* Senyawa Estragol Bunga Sawit: Pendekatan Sensor Kolorimetri untuk Memantau Kesiapan Penyerbukan

Oleh:

- Prof. Dr. Yeni Wahyuni Hartati
- Irkham, Ph.D
- Arjon Turnip, Ph.D

TUJUAN PROJECT

- Mengembangkan sensor kolorimetri berbasis reaksi warna untuk mendeteksi estragol secara real-time.
- Mengidentifikasi pereaksi kimia spesifik yang dapat bereaksi dengan estragol untuk menghasilkan perubahan warna.
- Menganalisis korelasi antara kadar estragol dengan kesiapan bunga sawit untuk penyerbukan.
- Menguji akurasi dan sensitivitas sensor dibandingkan dengan metode analisis gas standar (misalnya GC-MS).

JUSTIFIKASI RISET/PROJECT

Hasil Riset/Proyek Sebelumnya yang Relevan

- 1. Deteksi Senyawa Volatil pada Tanaman
- Beberapa penelitian telah dilakukan untuk mendeteksi senyawa volatil pada tanaman, termasuk estragol, menggunakan teknik seperti gas chromatography-mass spectrometry (GC-MS). Namun, metode ini seringkali memerlukan waktu analisis yang lama dan peralatan yang mahal (Dudareva et al., 2013; Knudsen, et al. 2006).
- 2. Sensor Kolorimetri untuk Deteksi Senyawa Kimia
- Sensor kolorimetri telah digunakan secara luas untuk mendeteksi senyawa kimia dalam berbagai aplikasi, termasuk di bidang pertanian. Keunggulan metode ini adalah kemampuannya untuk memberikan hasil secara real-time dengan biaya rendah (Zhang, X., et al., 2019; Chen, et al. 2020).
- 3. Estragol dan Penyerbukan pada Tanaman Sawit
- Estragol telah diidentifikasi sebagai salah satu senyawa volatil yang berperan dalam menarik serangga penyerbuk pada bunga sawit. Namun, penelitian tentang deteksi real-time senyawa ini masih terbatas)Adam, et al. 2011; Syed, 1979).
- 4. Aplikasi Teknologi Real-Time Monitoring dalam Pertanian
- Beberapa penelitian telah mengembangkan sistem real-time monitoring untuk parameter pertanian, seperti kelembaban, suhu, dan senyawa kimia. Namun, aplikasi untuk deteksi senyawa volatil seperti estragol masih jarang (Wang, et al. 2018; Liakos, et al. 2018).

JUSTIFIKASI RISET/PROJECT

Posisi Riset ini:

Riset ini menawarkan pendekatan inovatif dengan menggabungkan sensor kolorimetri untuk deteksi real-time senyawa estragol pada bunga sawit.

1. Inovasi Metode Deteksi

- Jika metode deteksi yang ada (seperti GC-MS) memerlukan waktu dan biaya tinggi, riset Anda menawarkan solusi yang lebih cepat dan ekonomis dengan menggunakan sensor kolorimetri. Ini dapat menjadi terobosan dalam pemantauan kesiapan penyerbukan bunga sawit.

2. Aplikasi Real-Time Monitoring

- Riset Anda mengisi celah dalam aplikasi real-time monitoring untuk senyawa volatil seperti estragol. Hal ini dapat meningkatkan efisiensi proses penyerbukan dan produktivitas tanaman sawit.

3. Relevansi dengan Industri Kelapa Sawit

- Dengan fokus pada bunga sawit, riset Anda memiliki potensi aplikasi langsung dalam industri kelapa sawit, yang merupakan sektor penting di banyak negara, termasuk Indonesia.

4. Kontribusi pada Ilmu Pengetahuan

- Riset Anda dapat memberikan kontribusi signifikan dalam memahami peran senyawa volatil seperti estragol dalam proses penyerbukan dan interaksi tanaman dengan serangga penyerbuk.

BIG PICTURE RISET/PROJECT

- Uji coba sensor dalam kondisi laboratorium dengan sampel estragol sintetis dan alami.
- Validasi kinerja sensor dengan metode analitik standar (seperti GC-MS).
- Implementasi sensor di lapangan untuk memantau kesiapan penyerbukan bunga sawit, dan Evaluasi kinerja sensor dalam kondisi real-time dan lingkungan yang bervariasi.

- Optimasi sensor untuk produksi massal, dan Uji coba skala industri dan evaluasi biaya produksi.
- Peluncuran produk sensor kolorimetri untuk deteksi estragol.

- Desain dan
 pengembangan prototipe
 sensor kolorimetri untuk
 deteksi estragol.
- Optimasi sensitivitas dan selektivitas sensor.

2026

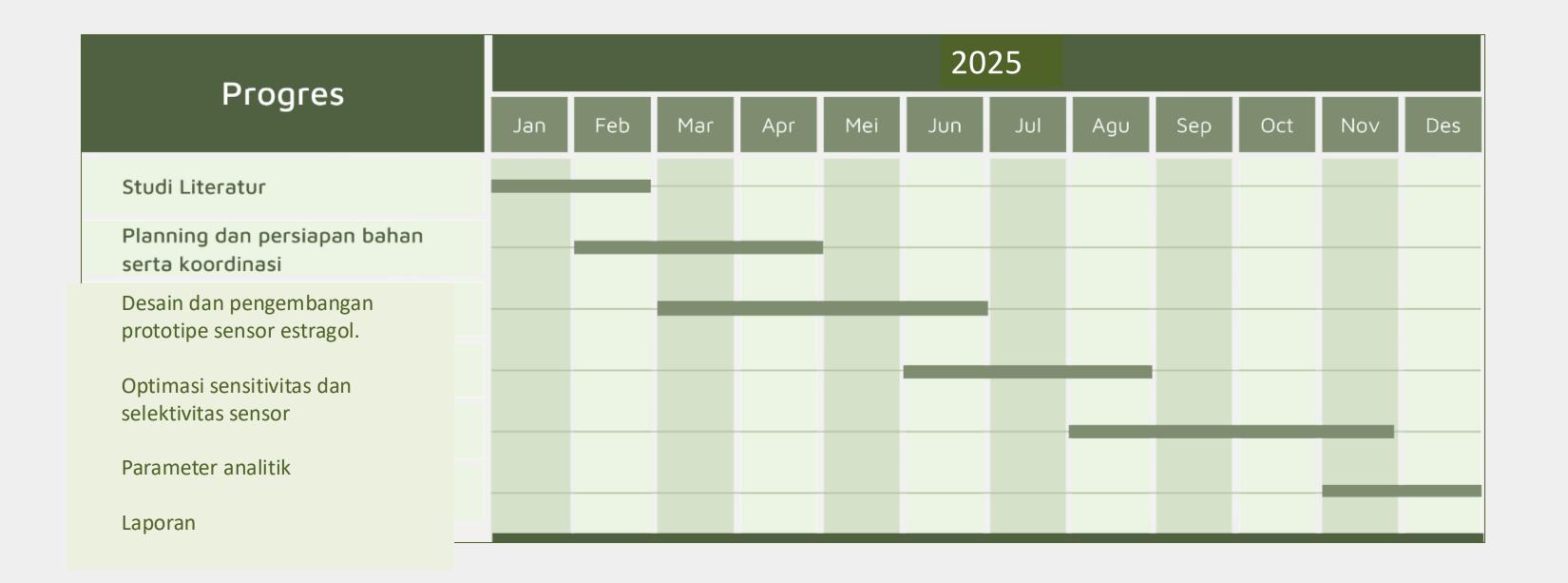
•Output:.

 Prototipe final yang siap untuk diproduksi massal, dan laporan analisis biaya dan kelayakan ekonomi, Produk komersial yang siap dipasarkan.

2027

Implementasi teknologi di perkebunan kelapa sawit.

2025


•Output:.

- Desain dan pengembangan prototipe sensor kolorimetri untuk deteksi estragol.
- Optimasi sensitivitas dan selektivitas sensor.

•Output:.

- Data validasi kinerja sensor.
- Publikasi hasil awal dalam jurnal ilmiah.
- Data lapangan tentang efektivitas sensor.
- Penyesuaian desain sensor berdasarkan hasil lapangan

GANTT CHART PELAKSANAAN

RAB RISET/PROJECT (BIAYA, MPP, ALAT DAN BAHAN)

.2.1 Struktur Biaya Tahun ke-1					
No	Komponen Biaya	Jumlah	Jumlah		
NO		Biaya (Rp)	Porsi (%)		
1 G	aji/upah/honor	78.500.000	27,34		
2 Ba	ahan/peralatan produksi	200.583.000	69,87		
3 Bi	aya publikasi	8.000.000	2,79		
4 Bi	aya institusi	13.000.000	4,53		
Total ANGGARAN		287.083.000	100%		

L2.1 Struktur Biaya Tahun ke-2					
No	Komponen Biaya	Jumlah			
		Biaya (Rp)	Porsi (%)		
1	Gaji/upah/honor	78.500.000	28,1		
2	Bahan/peralatan produksi	193.116.000	69,1		
3	Biaya perjalanan dan publikasi	8.000.000	2,9		
4	Biaya institusi	13.000.000	4,6		
Total ANGGARAN		279.616.000	100%		

L2.1 Struktur Biaya Tahun ke-3

No	Komponen Biaya	Jumlah	
		Biaya (Rp)	Porsi (%)
1	Gaji/upah/honor	78.500.000	27,6
2	Bahan/peralatan produksi	178.296.000	62,6
3	Biaya perjalanan dan publikasi	15.000.000	5,3
4	Biaya institusi	13.000.000	4,6
Total ANGGARAN		284.796.000	100%

DAMPAK RISET/PROJECT

1

Dampak secara financial

Return on Investment (ROI) 2027~ (10th Projek)

Modal awal: 287.083.000

Revenue: 75.000.000

79,6% ROI

3

tahun

Rp. 229.904.478,37

27,5% IRR

NPV

\$\frac{\frac{1}{2} \text{Value added}}{\text{product}}\$

Dampak secara non-financial

Analisis Resiko

- Efektivitas monitoring kesiapan penyerbukan
- Dapat diautomatisasi-IoT

Analisis Lingkungan

- Mengurangi penggunaan energi untuk monitoring
- Dapat diaplikasikan bersama mekatronika

Analisis Legal

- Meningkatkan produksi buah kelapa sawit
- Mendukung industri kelapa sawit Indonesia

Luaran Riset

- Publikasi ilmiah dan paten
- Prototipe sensor kolorimetri

