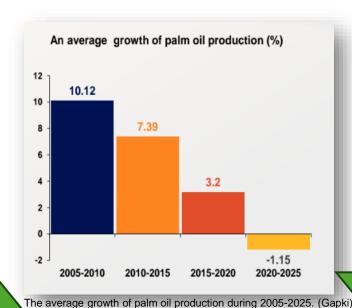
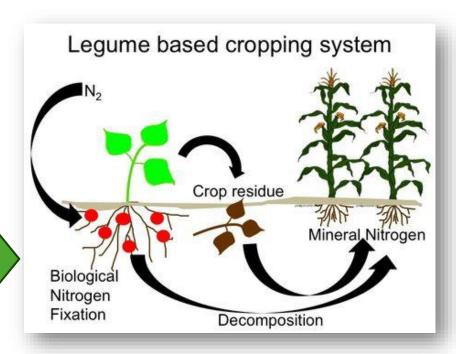
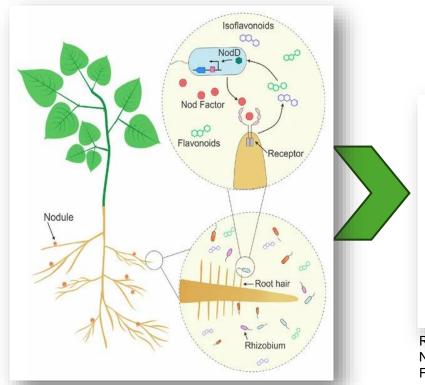

Enhancement of Oil Palm Plantation Growth through the Utilization of Lipo-chitooligosaccharides (1st Year)

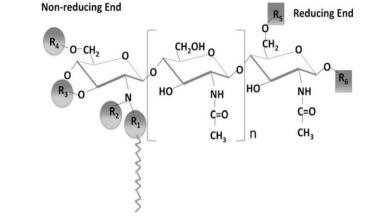
Project Team:


Ade Danova, Ph.D. Dr. Elvira Hermawati

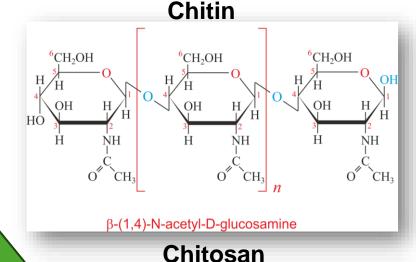
Department of Chemistry, Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung 2025


Introduction




The decrease of palm oil production is caused by nutrient deficiency of palm oil plantation like nitrogen

Introduction



https://doi.org/10.3390/genes9030125

Nod Factors (lipo-chitooligosaccharides)

Ref: Kassaw, Tessema & Frugoli, Julia. (2013). Journey to Nodule Formation: From Molecular Dialogue to Nitrogen Fixation. 10.1007/978-3-642-39317-4.

$\begin{array}{c} \begin{array}{c} ^{6}\text{CH}_{2}\text{OH} \\ \text{H} \\ \text{OH} \\ \text{H} \\ \text{OH} \\ \text{H} \end{array} \begin{array}{c} ^{6}\text{CH}_{2}\text{OH} \\ \text{OH} \\ \text{H} \\ \text{H} \\ \text{NH}_{2} \end{array} \begin{array}{c} ^{6}\text{CH}_{2}\text{OH} \\ \text{OH} \\ \text{H} \\ \text{H} \\ \text{NH}_{2} \end{array} \begin{array}{c} ^{6}\text{CH}_{2}\text{OH} \\ \text{OH} \\ \text{H} \\ \text{H} \\ \text{NH}_{2} \end{array} \begin{array}{c} ^{6}\text{CH}_{2}\text{OH} \\ \text{OH} \\ \text{H} \\ \text{H} \\ \text{NH}_{2} \end{array}$

Abundant Polysaccharide

Nod factors are molecules secreted by nitrogen-fixing rhizobia and are recognized by legumes as a message to "let's live together/symbiosis." If the rhizobia do not produce nod factors, or if the legume has a genetic mutation that means it cannot receive the message, nodules will not form. Nod factors have recently been shown to also enhance the germination, growth and yield of legumes and non-legumes through processes other than nodulation. Thus, Nod factors are very important for nitrogen-fixing to help the plants grow in soil that does not have much nitrogen by converting nitrogen from the air into a usable form

Introduction

Objectives of the research

1st Year: Synthesis of lipo-chitooligosaccharides and its analogs derived from chitosan

2nd Year: To determine the effect of lipo-chitooligosaccharides synthetic for palm oil plantation

3rd Year: To conduct the scale up production of lipochitooligosaccarides

Methodology

Synthesis of lipo-chitooligosaccharide and Its analogs derived from chitosan

 $R = -(CH_2)_7 - CH = CH - (CH_2)_7 - CH_3$

Lipo-Chitooligosaccharide

Methodology

Lab Equipments

UV Agilent Cary 60

SC-XRD Bruker D8 vent

new

NMR 400 MHz+NMR 500 MHz Cryoprobe NEW!!

(instrumen terbaik dikelasnya)

CD Jasco J1500 (Organic+Biochemistry)

LCMS-XEVO3 QTOF HRMS

new

new

Methodology

Lab Equipments

Carousel 12 parallel Reaction

Evaporator

Reactor

Kromatotron

"Sintesis Kimia Organik"

"Kromatografi"

Carousel 6 parallel Reaction

Electrasyn

Research Schedule

No.	Activity		Month							
		1	2	3	4	5	6	7	8	9
1	Preparation of chemicals									
2	Synthesis of benzylidene-chitosan									
3	Synthesis of benzylidene-chitosan acetate									
4	Monthly Discussion									
5	Synthesis of lipo-chitooligosaccharide									
6	Characterization of the products									
7	Full report									

Budgeting Plan-1st Year

No	Items	Cost
1	Chitosan	15.000.000
2	Acetic Anhydride	5.500.000
3	Trifluoroacetic acid	15.000.000
4	<i>p</i> -Anisaldehyde	6.500.000
5	Organic Solvent	150.000.000
6	N-Hydroxysuccinimide	15.000.000
7	Iodine	10.000.000
8	Silica Gel 60 F254 25 TLC Aluminium Sheet	15.000.000
10	Silica Gel 60 G for Thin-Layer Chromatography 1.007731.1000	15.000.000
11	Silica Gel 60 PF254 Containing Gypsum F 1.07749.1000	16.000.000
12	Triphenylphosphine	10.000.000
13	Research assistant	27.000.000
	Total	300.000.000

Research Impact

To obtain the chemical method for the synthesis of lipo-chitooligosaccharide

To obtain the pure product of lipochitooligosaccharide and its analogs

To obtain the library compounds of Nod factor in palm oil plantation