

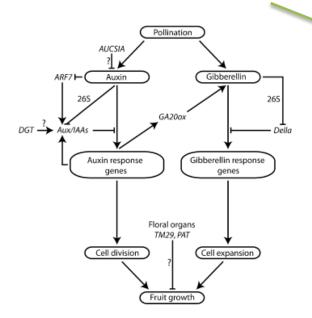
Project Leader: Halida Adistya Putri, S.P., M.Si

Team Project:

- 1. Sylvia Madusari, S.Si., M.Si
- 2. Faizal Shofwan Kusnendi, S.P., M.Si
- 3. Ebenezer M. Sibarani, S.P., M.Si
- 4. Fransiska Natalia Purba, S.P., M.Si
- 5. Renaldy Rachman S, S.Si., M.Si
- 6. Siti Wulandari, S.P., M.Si
- 7. Afan Ray Mahardika, S.P., M.Si
- 8. M. Maftuchin Sholeh, S.P.

TUJUAN RISET

Penelitian ini bertujuan untuk menganalisis efektifitas NAA dan GA3 dalam meningkatkan oil content kelapa sawit.



JUSTIFIKASI RISET

NAA

 NAA sebesar 1200 ppm sudah berhasil meningkatkan kandungan minyak kelapa sawit sebesar 36%, namun masih lebih rendah dibandingkan perlakuan polinasi buatan (Romero et al. 2021) GA3

 GA3 dengan konsenterasi tinggi yaitu 200 ppm meningkatkan pembentukan bunga dan menurunkan partenokarpi pada bunga (Baba et al. 2021)

Peran NAA dan GA3 (Jong et al. 2009)

NAA + GA3

- Kombinasi NAA (20 ppm) + GA3 (100 ppm) meningkatkan produksi (41.21kg/pohon) tanaman ceri dibandingkan aplikasi hormon tunggal.
- Kombinasi NAA dan GA3 memiliki peran penting dalam pembentukan buah (Jong et al. 2009; Bao et al. 2020)
- Masih terbatas penelitian tentang efektifitas NAA dan GA3 untuk meningkatkan minyak kelapa sawit

BIG PICTURE RISET

 Perlakuan berbagai kombinasi NAA d GA3 pada tiga fase pembungaan (praantesis, antesis, dan pasca antesis).

> Exp1. Penentuan Konsentrasi NAA dan GA3

Exp 2. Penentuan Frekuensi Aplikasi NAA dan GA3

 Perlakuan penentuan frekuensi aplikasi NAA dan GA3 yang optimal pada berbagai fase pembungaan. Perlakuan perbandingan aplikasi NAA dan GA3 pada bagian apex (drone) dan bunga (manual) dengan konsentrasi dan jumlah frekuensi yang sudah optimal.

> Exp. 3 Penentuan Aplikasi NAA dan GA3

METODOLOGI RISET

- Penelitian ini menggunakan Rancangan Acak Kelompok Dua Faktor Konsenterasi NAA (Aldrich) dan GA3
- Faktor 1:
 - 1. N0 = 0 ppm
 - 2. N1= NAA 600 ppm
 - 3. N2 = NAA 1200 ppm
- Faktor 2:
 - 1. G0 = 0 ppm
 - 2. G1 = 600 ppm
 - 3. G2 = 1200 ppm

Gambar 1. Aplikasi Fitohormon untuk Tiga Fase Pembungaan (A) Pra-antesis (PS 603), (B) Antesis (PS 607), dan (C)Pasca Anthesis (PS 609) yang diklasifikasikan menurut BBCH ("Biologische Bundesanstalt, Bundessortenamt and Chemische Industrie") (Romero et al. 2021).

- Semua perlakuan ditambahkan adjuvant 0,25%, 0.2% Tween 80, dan 2.5% ethanol, dengan dosis aplikasi 200 ml (Romero et al. 2021).
- Assisted Polination juga dilakukan sebagai pembanding dilakukan hanya pada fase anthesis (PS 607)
- Semua perlakuan diaplikasikan pada fase pra anthesis (PS 603),
 Anthesis (PS 607), dan Pasca Anthesis (PS 609) dapat dilihat pada Gambar 1 (Romero et al. 2021).

	NAA dan GA3	Fase Pembungaan					
	(ppm)	PS 603	PS 607	PS 609			
_	N0G0	Х					
	N0G1	X					
	N0G2	X					
	N1G0	X					
	N1G1	X					
	N1G2	X					
	N2G0	X					
	N2G1	X					
_	N2G2	Χ					
	N0G0		X				
	N0G1		X				
	N0G2		X				
(P	s N1G0		X				
an '	N1G1		X				
sch	^{le} N1G2		X				
	N2G0		X				
	N2G1		Χ				
_	N2G2		X				
	N0G0			Χ			
	N0G1			Χ			
	N0G2			Χ			
	N1G0			Χ			
	N1G1			Χ			
	N1G2			Χ			
	N2G0			Χ			
	N2G1			Χ			
_	N2G2			Х			

METODOLOGI RISET

- Parameter Pengamatan:
 - 1. Bobot Buah
 - 2. Oil to Bunch (O/B)
 - 3. Oil content per bunch (OC)
 - 4. Rata-rata buah partenokarpi
 - 5. Oil to dry mesocarp (O/DM)
 - 6. Fruit set
 - 7. Keterserapan hormon (GCMS)
- Analisis Data

Penelitian ini menggunakan 3 ulangan dengan setiap ulangan terdiri dari 10 tanaman dan terdiri 27 kombinasi taraf perlakuan, sehingga terdapat 810 satuan unit percobaan. Data dianalisis dengan analisis statistik pada taraf 5%. Apabila hasil uji F nyata, maka uji lanjut yang digunakan adalah Uji *Duncan's Multiple Range Test* (DMRT).

GANTT CHART RISET

Tabel 1. Rencana Kegiatan Penelitian

No.	Kegiatan	April	Mei	Juni	Juli	Agustus	September	Oktober	November	Desember
1	Persiapan									
2	Pelaksanaan Percobaan									
3	Pengamatan									
4	Evaluasi Percobaan									
5	Laporan Akhir									

LUARAN RISET

Konsentrasi NAA dan GA3 yang efektif

Peningkatan Pendapatan Perusahaan

Peningkatan Kegiatan Kerjasama

Publikasi Ilmiah (Q3)

RENCANA ANGGARAN RISET

No.	Uraian	Jumlah Unit	Satuan	Cost/Unit (Rp.)	Cost Total
1	Hormon NAA	300	gram	Rp50,000	Rp15,000,000
2	Hormon GA3	300	gram	Rp200,000	Rp60,000,000
3	Adjuvant	10	liter	Rp130,000	Rp1,300,000
4	Tween 80	10	liter	Rp150,000	Rp1,500,000
5	Etanol	30	liter	Rp100,000	Rp3,000,000
6	Hand sprayer	30	pcs	Rp80,000	Rp2,400,000
7	Filter bag	270	pcs	Rp60,000	Rp16,200,000
9	Gunting	10	pcs	Rp20,000	Rp200,000
15	Honor peneliti	8	orang	Rp6,000,000	Rp48,000,000
16	Transportasi	18	kali	Rp6,000,000	Rp108,000,000
17	Pengujian GCMS	27	sampel	Rp1,250,000	Rp33,750,000
18	ATK	10	pack	Rp20,000	Rp200,000
19	Kertas Label	10	pack	Rp15,000	Rp150,000
20	Plastik sample	10	pack	Rp30,000	Rp300,000
21	Publikasi	1	jurnal	Rp10,000,000	Rp10,000,000
TOTAL PENGAJUAN					

DAMPAK RISET (FINANCIAL & NON-FINANCIAL)

Financial

1. Peningkatan Produktivitas

Jika hormon berhasil meningkatkan pembungaan, maka jumlah buah dan tandan yang dihasilkan meningkat. Potensi peningkatan *Oil to Bunch* (O/B) dan *Oil Content per Bunch* (OCB) berkontribusi pada hasil panen yang lebih tinggi.

2. Efisiensi Biaya Produksi

Adanya peningkatan pembungaan yang mempengaruhi hasil panen maka biaya per kg minyak sawit mentah (CPO) bisa lebih rendah. Jika aplikasi hormon mengurangi kebutuhan pemangkasan bunga jantan yang berlebih dan meningkatkan efisiensi pembuahan, maka biaya tenaga kerja juga bisa ditekan.

3. Potensi Peningkatan Keuntungan

Hasil panen yang lebih tinggi dan efisiensi biaya produksi membuat margin keuntungan dapat meningkat. Jika harga minyak sawit di pasar sedang tinggi, penggunaan hormon dapat memberikan keuntungan lebih besar bagi perusahaan perkebunan.

DAMPAK RISET (FINANCIAL & NON-FINANCIAL)

Non-Financial

Secara non-financial dapat membantu sinkronisasi pembungaan, meningkatkan kualitas buah, serta berpengaruh pada lingkungan dan kesehatan tanaman. Namun, perlu pengelolaan yang baik agar tidak menyebabkan dampak negatif seperti abortus buah atau stress tanaman.

Terimakasih

Open Innovation BGA Tahun 2025

